# -------------------------------------------- # CITATION file created with {cffr} R package # See also: https://docs.ropensci.org/cffr/ # -------------------------------------------- cff-version: 1.2.0 message: 'To cite package "MCMCprecision" in publications use:' type: software license: GPL-3.0-only title: 'MCMCprecision: Precision of Discrete Parameters in Transdimensional MCMC' version: 0.4.1 doi: 10.1007/s11222-018-9828-0 identifiers: - type: doi value: 10.32614/CRAN.package.MCMCprecision abstract: Estimates the precision of transdimensional Markov chain Monte Carlo (MCMC) output, which is often used for Bayesian analysis of models with different dimensionality (e.g., model selection). Transdimensional MCMC (e.g., reversible jump MCMC) relies on sampling a discrete model-indicator variable to estimate the posterior model probabilities. If only few switches occur between the models, precision may be low and assessment based on the assumption of independent samples misleading. Based on the observed transition matrix of the indicator variable, the method of Heck, Overstall, Gronau, & Wagenmakers (2019, Statistics & Computing, 29, 631-643) draws posterior samples of the stationary distribution to (a) assess the uncertainty in the estimated posterior model probabilities and (b) estimate the effective sample size of the MCMC output. authors: - family-names: Heck given-names: Daniel W. email: daniel.heck@uni-marburg.de orcid: https://orcid.org/0000-0002-6302-9252 preferred-citation: type: article title: Quantifying Uncertainty in Transdimensional Markov Chain Monte Carlo Using Discrete Markov Models authors: - family-names: Heck given-names: Daniel W. email: dheck@uni-marburg.de orcid: https://orcid.org/0000-0002-6302-9252 - family-names: Overstall given-names: Antony - family-names: Gronau given-names: Quentin F. - family-names: Wagenmakers given-names: Eric-Jan year: '2019' journal: Statistics & Computing volume: '29' doi: 10.1007/s11222-018-9828-0 start: 631-643 repository: https://danheck.r-universe.dev repository-code: https://github.com/danheck/MCMCprecision commit: f87e5cbb2bc0e2145deff6c0bd327edc626c537f url: https://github.com/danheck/MCMCprecision date-released: '2024-07-03' contact: - family-names: Heck given-names: Daniel W. email: daniel.heck@uni-marburg.de orcid: https://orcid.org/0000-0002-6302-9252